Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Public Health ; 11: 1122095, 2023.
Article in English | MEDLINE | ID: covidwho-20245267

ABSTRACT

Introduction: The causal relationship between Coronavirus disease 2019 (COVID-19) and osteoporosis (OP) remains uncertain. We aimed to assess the effect of COVID-19 severity (severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19 hospitalization, and severe COVID-19) on OP by a two-sample Mendelian randomization (MR) study. Methods: We conducted a two-sample MR analysis using publicly available genome-wide association study (GWAS) data. Inverse variance weighting (IVW) was used as the main analysis method. Four complementary methods were used for our MR analysis, which included the MR-Egger regression method, the weighted median method, the simple mode method, and the weighted mode method. We utilized the MR-Egger intercept test and MR pleiotropy residual sum and outlier (MR-PRESSO) global test to identify the presence of horizontal pleiotropy. Cochran's Q statistics were employed to assess the existence of instrument heterogeneity. We conducted a sensitivity analysis using the leave-one-out method. Results: The primary results of IVW showed that COVID-19 severity was not statistically related to OP (SARS-CoV-2 infection: OR (95% CI) = 0.998 (0.995 ~ 1.001), p = 0.201403; COVID-19 hospitalization: OR (95% CI) =1.001 (0.999 ~ 1.003), p = 0.504735; severe COVID-19: OR (95% CI) = 1.000 (0.998 ~ 1.001), p = 0.965383). In addition, the MR-Egger regression, weighted median, simple mode and weighted mode methods showed consistent results. The results were robust under all sensitivity analyses. Conclusion: The results of the MR analysis provide preliminary evidence that a genetic causal link between the severity of COVID-19 and OP may be absent.


Subject(s)
COVID-19 , Osteoporosis , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis/epidemiology , Osteoporosis/genetics
2.
Front Psychiatry ; 14: 1136931, 2023.
Article in English | MEDLINE | ID: covidwho-20243614

ABSTRACT

Background: Obsessive-compulsive disorder (OCD) is one of the top ten disabling diseases seriously affecting the health of population. Recently, studies on this disease significantly increased. However, only a few bibliometric analyses concerning this area have been reported. In this study, we used bibliometrics and visualization tools to examine the current state, hot topics and future trends in OCD research. Methods: Scientific publications regarding OCD were retrieved from the Web of Science Core Collection (WoSCC) database. The features of OCD research were further analyzed using VOSviewer. Results: A total of 24,552 publications and 65,296 authors in the field of OCD were retrieved from 2000 to 2022, showing an overall upward trend in publications over the past 22 years. One hundred and thirteen countries around the world had participated in the research. Among these countries, the developed countries such as the United States, England, and Canada were the crucial productive nations in this subject. As for institutions, the Harvard University, the University of London, and the University of California system were the leading institutions. Authors including Storch EA, Mataix-Cols D, and Stein DJ were the prolific authors. 1,949 journals are contributing to the OCD field, of which the top three are Biological Psychiatry (831 articles), European Neuropsychopharmacology (776 articles) and Psychiatric Research (648 articles). Research hotspots of OCD included pathogenesis, epidemiology, comorbidities, clinical features, and evaluation methods. COVID-19, mental health, functional connectivity, and genome-wide association were emerging trends in the field of OCD. Conclusion: This study integrates the bibliometric information on the current research status and emerging trends in OCD from a macro perspective. The findings can provide valuable insights into further research on OCD.

3.
Cytojournal ; 20: 4, 2023.
Article in English | MEDLINE | ID: covidwho-2254536

ABSTRACT

Pulmonary fibrosis is a complication in patients with coronavirus disease 2019 (COVID-19). Extensive pulmonary fibrosis is a severe threat to patients' life and lung transplantation is last resort to prolong the life of patients. We reported a case of critical type COVID-19 patient, though various treatment measures were used, including anti-virus, anti-infection, improving immunity, convalescent plasma, prone position ventilation, and airway cleaning by fiber-optic bronchoscope, although his COVID-19 nucleic acid test turned negative, the patient still developed irreversible extensive pulmonary fibrosis, and respiratory mechanics suggested that lung compliance could not be effectively recovered. After being assisted by ventilator and extracorporeal membrane oxygenation for 73 days, he finally underwent double-lung transplantation. On the 2nd day after the operation, the alveolar lavage fluid of transplanted lung was examined by cytomorphology, and the morphology of alveolar epithelial cells was intact and normal. On the 20th day post-transplantation, the chest radiograph showed a large dense shadow in the middle of the right lung. On the 21st day, the patient underwent fiber-optic bronchoscopy, yeast-like fungal spores were found by cytomorphological examination from a brush smear of the right bronchus, which was confirmed as Candida parapsilosis infection by fungal culture. He recovered well due to the careful treatment and nursing in our hospital. Until July 29, 96 days after transplantation, the patient was recovery and discharged from hospital.

4.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2200539

ABSTRACT

Cell death is a fundamental pathophysiological process in human disease. The discovery of necroptosis, a form of regulated necrosis that is induced by the activation of death receptors and formation of necrosome, represents a major breakthrough in the field of cell death in the past decade. Z-DNA-binding protein (ZBP1) is an interferon (IFN)-inducing protein, initially reported as a double-stranded DNA (dsDNA) sensor, which induces an innate inflammatory response. Recently, ZBP1 was identified as an important sensor of necroptosis during virus infection. It connects viral nucleic acid and receptor-interacting protein kinase 3 (RIPK3) via two domains and induces the formation of a necrosome. Recent studies have also reported that ZBP1 induces necroptosis in non-viral infections and mediates necrotic signal transduction by a unique mechanism. This review highlights the discovery of ZBP1 and its novel findings in necroptosis and provides an insight into its critical role in the crosstalk between different types of cell death, which may represent a new therapeutic option.


Subject(s)
Necroptosis , Necrosis , Humans , Necrosis/drug therapy , Necrosis/metabolism , Virus Diseases/metabolism
5.
Bioorg Chem ; 131: 106316, 2023 02.
Article in English | MEDLINE | ID: covidwho-2149385

ABSTRACT

The recent global Omicron epidemics underscore the great need for the development of small molecule therapeutics with appropriate mechanisms. The trimeric spike protein (S) of SARS-CoV-2 plays a pivotal role in mediating viral entry into host cells. We continued our efforts to develop small-molecule SARS-CoV-2 entry inhibitors. In this work, two sets of BA derivatives were designed and synthesized based on the hit BA-1 that was identified as a novel SARS-CoV-2 entry inhibitor. Compound BA-4, the most potent one, showed broad inhibitory activities against pOmicron and other pseudotyped variants with EC50 values ranging 2.73 to 5.19 µM. Moreover, pSARS-CoV-2 assay, SPR analysis, Co-IP assay and the cell-cell fusion assay coupled with docking and mutagenesis studies revealed that BA-4 could stabilize S in the pre-fusion step to interfere with the membrane fusion, thereby displaying promising inhibition against Omicron entry.


Subject(s)
COVID-19 , HIV Fusion Inhibitors , Oleanolic Acid , Saponins , Virus Diseases , Humans , SARS-CoV-2 , Oleanolic Acid/pharmacology
7.
Front Immunol ; 13: 898151, 2022.
Article in English | MEDLINE | ID: covidwho-1933687

ABSTRACT

Safe and effective vaccines against SARS-CoV-2 for children are urgently needed. Here we aimed to assess the safety and immunogenicity of an inactivated COVID-19 vaccine candidate, WIBP-CorV, in participants aged 3-17 years. A randomized, double-blind, placebo-controlled, phase 1/2 clinical trial was conducted in Henan Province, China, in healthy children aged 3-17 years. 240 participants in phase 1 trial and 576 participants in phase 2 trial were randomly assigned to vaccine or control with an age de-escalation in three cohorts (3-5, 6-12 and 13-17 years) and dose-escalation in three groups (2.5, 5.0 and 10.0µg/dose), and received 3 intramuscular injections at day 0, 28, and 56. WIBP-CorV showed a promising safety profile with approximately 17% adverse reactions within 30 days after injection and no grade 3 or worse adverse events. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting. The geometric mean titers of neutralizing antibody ranged from 102.2 to 1065.5 in vaccinated participants at 28 days after the third vaccination, and maintained at a range of 14.3 to 218.2 at day 180 after the third vaccination. WIBP-CorV elicited significantly higher titers of neutralizing antibody in the cohort aged 3-5 years than the other two cohorts. There were no detectable antibody responses in all alum-only groups. Taken together, our data demonstrate that WIBP-CorV is safe and well tolerated at all tested doses in participants aged 3-17 years, and elicited robust humoral responses against SARS-CoV-2 lasted for at least 6 months after the third vaccination. This study is ongoing and is registered with www.chictr.org.cn, ChiCTR2000031809.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Double-Blind Method , Humans , SARS-CoV-2
8.
EClinicalMedicine ; 38: 101010, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1300745

ABSTRACT

BACKGROUND: We aimed to assess the safety and immunogenicity of an inactivated vaccine against COVID-19 in Chinese adults aged ≥18 years. METHODS: This is an ongoing randomized, double-blind, placebo-controlled, phase 1/2 clinical trial among healthy adults aged ≥18 years in Henan Province, China. Participants (n = 336 in 18-59 age group and n = 336 in ≥60 age group) were enrolled between April 12 and May 17 2020, and were equally randomized to receive vaccine or placebo (aluminum hydroxide adjuvant) in a three-dose schedule of 2·5, 5, or 10 µg on days 0, 28, and 56. Another 448 adults aged 18-59 years were equally allocated to four groups (a one-dose schedule of 10 µg, and two-dose schedules of 5 µg on days 0 and 14/21/28) and received vaccine or placebo (ratio 3:1 within each group). The primary outcomes were 7-day post-injection adverse reactions and neutralizing antibody titres on days 28 and 90 after the whole-course vaccination. Trial registration: www.chictr.org.cn #ChiCTR2000031809. FINDINGS: The 7-day adverse reactions occurred in 4·8% to 32·1% of the participants in various groups, and most adverse reactions were mild, transient, and self-limiting. Twenty participants reported 68 serious adverse events which were judged to be unrelated to the vaccine. The 90-day post-injection geometric mean titres of neutralizing antibody ranged between 87 (95% CI: 61-125) and 129 (99-169) for three-dose schedule among younger and older adults; 20 (14-27), 53 (38-75), and 44 (32-61) in 5 µg days 0 and 14/21/28 groups, respectively, and 7 (6-9) in one-dose 10 µg group. There were no detectable antibody responses in all placebo groups. INTERPRETATION: The inactivated vaccine against COVID-19 was well tolerated and immunogenic in both younger and older adults. The two-dose schedule of 5 µg on days 0 and 21/28 and three-dose schedules on days 0, 28, and 56 could be further evaluated for long-term safety and efficacy in the phase 3 trials.

9.
Virol Sin ; 36(5): 879-889, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1174014

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused more than 96 million infections and over 2 million deaths worldwide so far. However, there is no approved vaccine available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease causative agent. Vaccine is the most effective approach to eradicate a pathogen. The tests of safety and efficacy in animals are pivotal for developing a vaccine and before the vaccine is applied to human populations. Here we evaluated the safety, immunogenicity, and efficacy of an inactivated vaccine based on the whole viral particles in human ACE2 transgenic mouse and in non-human primates. Our data showed that the inactivated vaccine successfully induced SARS-CoV-2-specific neutralizing antibodies in mice and non-human primates, and subsequently provided partial (in low dose) or full (in high dose) protection of challenge in the tested animals. In addition, passive serum transferred from vaccine-immunized mice could also provide full protection from SARS-CoV-2 infection in mice. These results warranted positive outcomes in future clinical trials in humans.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , Mice , Mice, Transgenic , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated/immunology
10.
Emerg Microbes Infect ; 9(1): 2653-2662, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-977352

ABSTRACT

In the face of COVID-19 pandemic caused by the newly emerged SARS-CoV-2, an inactivated, Vero cell-based, whole virion vaccine candidate has been developed and entered into phase III clinical trials within six months. Biochemical and immunogenic characterization of structural proteins and their post-translational modifications in virions, the end-products of the vaccine candidate, would be essential for the quality control and process development of vaccine products and for studying the immunogenicity and pathogenesis of SARS-CoV-2. By using a panel of rabbit antisera against virions and five structural proteins together with a convalescent serum, the spike (S) glycoprotein was shown to be N-linked glycosylated, PNGase F-sensitive, endoglycosidase H-resistant and cleaved by Furin-like proteases into S1 and S2 subunits. The full-length S and S1/S2 subunits could form homodimers/trimers. The membrane (M) protein was partially N-linked glycosylated; the accessory protein 3a existed in three different forms, indicative of cleavage and dimerization. Furthermore, analysis of the antigenicity of these proteins and their post-translationally modified forms demonstrated that S protein induced the strongest antibody response in both convalescent and immunized animal sera. Interestingly, immunization with the inactivated vaccine did not elicit antibody response against the S2 subunit, whereas strong antibody response against both S1 and S2 subunits was detected in the convalescent serum. Moreover, vaccination stimulated stronger antibody response against S multimers than did the natural infection. This study revealed that the native S glycoprotein stimulated neutralizing antibodies, while bacterially-expressed S fragments did not. The study on S modifications would facilitate design of S-based anti-SARS-CoV-2 vaccines.


Subject(s)
COVID-19 Vaccines , Protein Processing, Post-Translational , SARS-CoV-2/isolation & purification , Viral Structural Proteins , Virion , Animals , Antigens, Viral/analysis , Antigens, Viral/metabolism , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Cattle , Chlorocebus aethiops , Humans , Rabbits , SARS-CoV-2/immunology , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/immunology , Vero Cells , Viral Structural Proteins/chemistry , Viral Structural Proteins/immunology , Viral Structural Proteins/isolation & purification , Virion/chemistry , Virion/immunology , Virion/isolation & purification
11.
Emerg Microbes Infect ; 9(1): 2606-2618, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-944152

ABSTRACT

The ongoing COVID-19 pandemic is causing huge impact on health, life, and global economy, which is characterized by rapid spreading of SARS-CoV-2, high number of confirmed cases and a fatality/case rate worldwide reported by WHO. The most effective intervention measure will be to develop safe and effective vaccines to protect the population from the disease and limit the spread of the virus. An inactivated, whole virus vaccine candidate of SARS-CoV-2 has been developed by Wuhan Institute of Biological Products and Wuhan Institute of Virology. The low toxicity, immunogenicity, and immune persistence were investigated in preclinical studies using seven different species of animals. The results showed that the vaccine candidate was well tolerated and stimulated high levels of specific IgG and neutralizing antibodies. Low or no toxicity in three species of animals was also demonstrated in preclinical study of the vaccine candidate. Biochemical analysis of structural proteins and purity analysis were performed. The inactivated, whole virion vaccine was characterized with safe double-inactivation, no use of DNases and high purity. Dosages, boosting times, adjuvants, and immunization schedules were shown to be important for stimulating a strong humoral immune response in animals tested. Preliminary observation in ongoing phase I and II clinical trials of the vaccine candidate in Wuzhi County, Henan Province, showed that the vaccine is well tolerant. The results were characterized by very low proportion and low degree of side effects, high levels of neutralizing antibodies, and seroconversion. These results consistent with the results obtained from preclinical data on the safety.


Subject(s)
COVID-19 Vaccines/immunology , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19 Vaccines/adverse effects , Female , Immunity, Humoral , Male , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology
12.
JAMA ; 324(10): 951-960, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-911581

ABSTRACT

Importance: A vaccine against coronavirus disease 2019 (COVID-19) is urgently needed. Objective: To evaluate the safety and immunogenicity of an investigational inactivated whole-virus COVID-19 vaccine in China. Interventions: In the phase 1 trial, 96 participants were assigned to 1 of the 3 dose groups (2.5, 5, and 10 µg/dose) and an aluminum hydroxide (alum) adjuvant-only group (n = 24 in each group), and received 3 intramuscular injections at days 0, 28, and 56. In the phase 2 trial, 224 adults were randomized to 5 µg/dose in 2 schedule groups (injections on days 0 and 14 [n = 84] vs alum only [n = 28], and days 0 and 21 [n = 84] vs alum only [n = 28]). Design, Setting, and Participants: Interim analysis of ongoing randomized, double-blind, placebo-controlled, phase 1 and 2 clinical trials to assess an inactivated COVID-19 vaccine. The trials were conducted in Henan Province, China, among 96 (phase 1) and 224 (phase 2) healthy adults aged between 18 and 59 years. Study enrollment began on April 12, 2020. The interim analysis was conducted on June 16, 2020, and updated on July 27, 2020. Main Outcomes and Measures: The primary safety outcome was the combined adverse reactions 7 days after each injection, and the primary immunogenicity outcome was neutralizing antibody response 14 days after the whole-course vaccination, which was measured by a 50% plaque reduction neutralization test against live severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Among 320 patients who were randomized (mean age, 42.8 years; 200 women [62.5%]), all completed the trial up to 28 days after the whole-course vaccination. The 7-day adverse reactions occurred in 3 (12.5%), 5 (20.8%), 4 (16.7%), and 6 (25.0%) patients in the alum only, low-dose, medium-dose, and high-dose groups, respectively, in the phase 1 trial; and in 5 (6.0%) and 4 (14.3%) patients who received injections on days 0 and 14 for vaccine and alum only, and 16 (19.0%) and 5 (17.9%) patients who received injections on days 0 and 21 for vaccine and alum only, respectively, in the phase 2 trial. The most common adverse reaction was injection site pain, followed by fever, which were mild and self-limiting; no serious adverse reactions were noted. The geometric mean titers of neutralizing antibodies in the low-, medium-, and high-dose groups at day 14 after 3 injections were 316 (95% CI, 218-457), 206 (95% CI, 123-343), and 297 (95% CI, 208-424), respectively, in the phase 1 trial, and were 121 (95% CI, 95-154) and 247 (95% CI, 176-345) at day 14 after 2 injections in participants receiving vaccine on days 0 and 14 and on days 0 and 21, respectively, in the phase 2 trial. There were no detectable antibody responses in all alum-only groups. Conclusions and Relevance: In this interim report of the phase 1 and phase 2 trials of an inactivated COVID-19 vaccine, patients had a low rate of adverse reactions and demonstrated immunogenicity; the study is ongoing. Efficacy and longer-term adverse event assessment will require phase 3 trials. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2000031809.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/adverse effects , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Dose-Response Relationship, Immunologic , Double-Blind Method , Female , Humans , Injections, Intramuscular , Male , Pneumonia, Viral/immunology , Propiolactone , SARS-CoV-2 , Vaccines, Inactivated/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
13.
Pediatr Infect Dis J ; 39(7): e135-e137, 2020 07.
Article in English | MEDLINE | ID: covidwho-209804

ABSTRACT

We report a case of childhood coronavirus disease 2019 infection with pleural effusion complicated by possible secondary Mycoplasma pneumoniae infection. Fever and pulmonary lesions on computed tomography were the early clinical manifestations, and the patient developed nonproductive cough later. The hydrothorax in this coronavirus disease 2019 case was exudative, showing predominantly mature lymphocytes.


Subject(s)
Coronavirus Infections/microbiology , Pleural Effusion/microbiology , Pneumonia, Mycoplasma/virology , Pneumonia, Viral/microbiology , Betacoronavirus/isolation & purification , COVID-19 , Child , Coronavirus Infections/virology , Fever/virology , Humans , Lung/diagnostic imaging , Male , Pandemics , Pleural Effusion/pathology , Pleural Effusion/virology , Pneumonia, Mycoplasma/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL